Latest Update in Type 2 Diabetes Medications

Objectives

- Describe the current guidelines for the pharmacologic treatment of hyperglycemia
- Discuss medications available for treatment of type 2 diabetes
- Identify the availability, efficacy, and contraindications of new medication therapies for type 2 diabetes

Patient Case

 MJ is a 52 year old hispanic female recently diagnosed with type 2 diabetes, who was initiated on metformin 1000mg BID

Type 2 Diabetes Guidelines

- American Diabetes Association
 - Updated in 2014
- American Association of Clinical Endocrinologists
 - Updated in 2013

Goal HbA1c <7% Pre-prandial BG <130mg/dl Post-prandial BG <180mg/dl Tighter targets (6.0-6.5%) – younger, healthier Looser targets (7.5-8.0%+) older, comorbidities, hypoglycemia, prone, etc.

ADA Recommendations

Patient Centered Approach

Other Factors to Consider

- Psychosocial factors
- Kidney function
- Comorbidities
- Lifestyle Modifications
- Blood Pressure
- Lipids
- Foot Care
- Vaccinations
- Socioeconomic status
- Health Literacy
- Culture

Drugs Used f	or Diabetes			
Subclass	Mechanism of Action	Effects	Clinical Applications	Pharmacokinetics, Toxicities Interactions
INSULINS				
Rapid-acting: Lispro, aspart, glulisine Short-acting: Regular Intermediate- acting: NPH Long-acting: Detemir, glargine	Activate insulin receptor	Reduce circulating glucose • promote glucose transport and oxidation; glycogen, lipid, protein synthesis; and regulation of gene expression	Type 1 and type 2 diabetes	Parenteral (SC or IV) • duration varies (see text) • Toxicity: Hypoglycemia, weight gain, lipodystrophy (rare)
SULFONYLURE	AS			
Glipizide Glyburide Glimepiride	Insulin secretagogues: Close K ⁺ channels in beta cells • increase insulin release	In patients with functioning beta cells, reduce circulating glucose • increase glycogen, fat, and protein formation • gene regulation	Type 2 diabetes	Orally active • duration 10-24 h <i>Toxicity:</i> Hypoglycemia, weight gain

		1		
Metformin	Obscure: Reduced hepatic and renal gluconeogenesis	Decreased endogenous glucose production	Type 2 diabetes	Oral • maximal plasma concentration in 2–3 h • Toxicity: Gastrointestinal symptoms, lactic acidosis (rare) • cannot use if impaired renal/hepatic function • congestive heart failure (CHF), hypoxic/acidotic states, alcoholism
ALPHA-GLUCO	SIDASE INHIBITOR	RS		
Acarbose, miglitol	Inhibit intestinal α -glucosidases	Reduce conversion of starch and disaccharides to monosaccharides * reduce postprandial hyperglycemia	Type 2 diabetes	Oral • rapid onset • Toxicity: Gastrointestinal symptoms • cannot use if impaired renal/hepatic function, intestinal disorders
THIAZOLIDIN	DIONES			
Pioglitazone	Regulates gene expression by binding to PPAR-Y and PPAR-X	Reduces insulin resistance	Type 2 diabetes	Oral • long-acting (> 24 h) • Toxicity: Fluid retention, edema, anemia, weight gain, macular edema, bone fractures in women • cannot use if CHF, hepatic disease
Rosiglitazone	Regulates gene expression by binding to PPAR-Y	Reduces insulin resistance	Type 2 diabetes	Oral • long-acting (> 24 h) • Toxicity: Fluid retention, edema, anemia, weight gain, macular edema, bone fractures in women • cannot use if CHF, hepatic disease • may worsen heart disease

GLITINIDES				
Repaglinide	Insulin secretagogue: Similar to sulfonylureas with some overlap in binding sites	In patients with functioning beta cells, reduces circulating glucose • increases glycogen, fat, and protein formation • gene regulation	Type 2 diabetes	Oral • very fast onset of action duration 5–8 h • <i>Toxicity:</i> Hypoglycemia
Nateglinide	Insulin secretagogue: Similar to sulfonylureas with some overlap in binding sites	In patients with functioning beta cells, reduces circulating glucose • increases glycogen, fat, and protein formation • gene regulation	Type 2 diabetes	Oral • very fast onset and short duration (< 4 h) • <i>Toxicity:</i> Hypoglycemia

ELUCAGON-L	IKE POLYPEPTIDE-1	(GLP-1) RECEPTOR AG	ONISTS	
Exenatide	Analog of GLP-1: Binds to GLP-1 receptors	Reduces post-meal glucose excursions: Increases glucose- mediated insulin release, lowers glucagon levels, slows gastric emptying, decreases appetite	Type 2 diabetes	Parenteral (SC) • half-life ~2.4 l Toxicity: Nausea, headache, vomiting, anorexia, mild weight loss, pancreatitis
Liraglutide: S	Similar to exenatide; du	ration up to 24 h; immun	e reactions, p	ossible thyroid carcinoma risk
DIPEPTIDYL	PEPTIDASE-4 (DPP-4) INHIBITORS		
Sitagliptin	DPP-4 inhibitor: Blocks degradation of GLP-1, raises circulating GLP-1 levels	Reduces post-meal glucose excursions: Increases glucose- mediated insulin release, lowers glucagon levels, slows gastric emptying, decreases appetite	Type 2 diabetes	Oral • half-life ~12 h • 24-h duration of action • Toxicity: Rhinitis, upper respiratory infections, headaches, pancreatitis, rare allergic reactions

Subclass	Mechanism of Action	Effects	Clinical Applications	Pharmacokinetics, Toxicities, Interactions
AMYLIN ANAL	og	•		
Pramlintide	Analog of amylin: Binds to amylin receptors	Reduces post-meal glucose excursions: Lowers glucagon levels, slows gastric emptying, decreases appetite	Type 1 and type 2 diabetes	Parenteral (SC) • rapid onset • half-life ~ 48 min • <i>Toxicity:</i> Nausea, anorexia, hypoglycemia, headache
BILE ACID SEC	QUESTRANT			
Colesevelam hydrochloride	Bile acid binder	Lowers glucose through unknown mechanisms	Type 2 diabetes	Oral • 24-h duration of action • Toxicity: Constipation, indigestion flatulence

Combination Medications

- TZD's + Metformin combinations
 - √ ACTO plus met[®] (pioglitazone/metformin)
 - √ ACTO plus met XR® (pioglitazone/metformin)
 - ✓ Avandamet® (rosiglitazone/metformin)
- Metformin + DPP IV-inhibitors
 - ✓ Janumet® (sitagliptin/metformin)
 - ✓ Jentadueto® (linagliptin/metformin)
 - √ Kombiglyze XR® (saxagliptin/metformin)
- Metformin + Sulfonylureas
 - ✓ Glucovance® (glyburide/metformin)
 - ✓ Metaglip® (glipizide/metformin)

Combination Medications

- TZD's + Sulfonylureas
 - ✓ Avandaryl® (rosiglitazone/glimeperide)
 - ✓ Duetact* (pioglitazone/glimeperide)
- · Metformin + Meglitinides
 - PrandiMet® (repaglinide/metformin)
- DPP-IV Inhibitors + Statins
 - Juvisync® (sitagliptin/simvastatin)

SGLT-2 Inhibitors

- Sodium-dependent glucose transporter (SGLT) 2 in proximal convoluted tubule
 - reabsorbs ~ 90% of filtered glucose
 - transport of glucose is linked to downhill sodium transport
 - Na⁺ is then pumped out of the cell into the interstitium by active transport
 - Glucose exits by facilitated diffusion via glucose transporter (GLUT) 2 into the interstitial fluid.

http://www.endocrinetoday.com/pda.aspx?rid=

Glucose/Na Transport Genes

Transporter	Distribution
SGLT1	Intestine, trachea, kidney, heart, brain, testis, prostate
SGLT2	Kidney, brain, liver, thyroid, muscle, heart
SGLT4	Intestine, kidney, liver, brain, lung, trachea, uterus, pancreas
SGLT5	Kidney
SGLT6	Brain, kidney, intestine
SMIT1	Brain, heart, kidney, lung

Normal Renal Glucose Physiology

- 180g of glucose is filtered each day
- Virtually all glucose reabsorbed in the proximal tubules and reenters the circulation
- SGLT2 reabsorbs = 90% of the glucose
- SGLT1 reabsorbs 10% of the glucose
- · Virtually no glucose excreted in the urine

Glucose Homeostasis

- Body glucose stores ≈ 450g
- Daily glucose turnover ≈ 250g
- Typical Western diet ≈ 180g/day
- Gluconeogensis (liver and kidney) bridges gap
- Brain consumes ≈ 125g/day
- Kidneys assist in homeostasis by reabosrbing glucose

Effects of SGLT2 Inhibitors

- Inhibition of renal tubular sodium-glucose cotransporter → reversal of hyperglycemia → reversal of "glucotoxicity"
- 1 Insulin sensitivity in muscle
 - GLUT4 translocation
 - ♠ Insulin signaling
- 1 Insulin sensitivity in liver
 - ◆ Glucose-6-posphatase
- **♦** Gluconeogenesis
- ◆ Cori Cycle
- PEP carboxykinase
- Improved beta cell function

SGLT-2 Inhibitors

Canagliflozin (Invokana[™]) – 100mg and 300mg tablets

- Metformin IR + canagliflozin (InvokametTM)

Dapagliflozin (Forxiga[™]) – 5 and 10mg tablets

- Metformin XR + dapagliflozin (Xigduo™)

Empagliflozin (Jardiance[™]) – 10 and 25mg tablets

SGLT-2 Inhibitors

- In development:
 - Ertugliflozin Phase II
 - Ipragliflozin Phase III (approved in Japan 1/14)
 - Luseogliflozin (approved in Japan 3/14)
 - · Remogliflozin Phase lib
 - Sergliflozin (stopped after Phase II)
 - Tofoliflozin Phase III (approved in Japan 3/14)

SGLT-2 Inhibitors

Benefits

- Insulin Independence
- Weight Reduction
- · Low risk of hypoglycemia
- Blood pressure reductions

Limitations/Concerns

- Polyuria
- Electrolytes
- Urinary tract infections
 - Bacterial
 - Fungal
- · Genital fungal infections
- Vulvovaginitis
- Bulanitis

GLP-1 Agonists Glucagon Like Polypeptide -1

- Incretin hormone → stimulates post-prandial insulin secretion
- · Other pancreatic effects:
 - · Increases insulin production
 - Decreases glucagon secretion
 - Increases β-cell glucose sensitivity
- Extra-pancreatic effects → receptors located in the brain, heart, kidney, lung, and GI tract

PHYSIOLOGY OF GLP-1 SECRETION AND ACTION ON GLP-1 RECEPTORS IN DIFFERENT ORGANS AND TISSUES Heart Obesity Therapy Obesity Therapy Obesity Therapy Pancreas GlP-1 Insulin biosynthesis Beta-cell apoptosis Beta-cell apoptosis Glucagon secretion Glucagon secretion Glucagon secretion Glucagon secretion GLP-1 decreases appetite and delays gastric emptying— therapeutic target for obesity Richard E. Pratley, Matthew Gilbert; Rev Diobet Stud, 2008, 5(2) 2008.

GLP-1 Receptor Agonists

- Exenatide (Byetta®, Bydureon®) 10mcg BID
- Liraglutide (Victoza®) 1.2mg or 1.8mg daily
- Albiglutide (Tanzeum) 30mg once weekly

GLP-1 Receptor Agonists

Benefits

- Increases satiety
- · Slows gastric emptying
- Weight loss

Limitations/Concerns

- Nausea, vomiting, diarrhea
- Hypoglycemia
- Delays absorption of other medications
- Thyroid cancer, pancreatitis - liraglutide

DPP-IV Inhibitors Dipeptidyl Peptidase 4 Inhibitors

- Sitagliptin (Januvia®) 100mg once daily
- ○Saxagliptin (Onglyza®) 2.5-5mg once daily
- Linagliptin (Tradjenta®) 5mg once daily

Amylin Mimetics

 Pramlintide (Symlin®) – 60-100mcg - a synthetic form of amylin with amino acid modifications to improve bioavailability

Amylin Mimetics Benefits Weight loss Approved for Type 1 and Type 2 Limitations/Concerns Nausea Hypoglycemia Contraindicated in patients with gastropareiss or other disorders of motility

Drug Name	Available Generic?	Cost without Insurance
Metformin	Yes	Free at Publix
Glipizide	Yes	\$4.00
Pioglitazone	Yes	\$193
Repaglinide	Yes	\$73
Victoza	No	\$720
Januvia	No	\$177
Invokana	No	\$400
Insulin	Yes	Variable
	*Pri	ices from GoodRX.com

Efficacy Drug Class Expected A1c lowering Alpha-glucosidase inhibitor 0.5-1% Amylin analog 0.5-1% Biguanide 1-1.5% **DPP-IV** Inhibitor 0.5-1% GLP-1 agonist 1-1.5% Insulin 1.5-3.5% SGLT-2 Inhibitor 0.7-1% Sulfonylurea 1-1.5% Thiazolidinedione 1-1.5% Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Diabetes Care 2012;35:1364-79.

Back to MJ.....

- A1c
- Home Glucose Readings
- Comorbidities
- · Insured vs. Uninsured
- Side Effect Profile
- Medication Adherence
- Other Lab Values

